skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Appleby, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Presenting a predictive model's performance is a communication bottleneck that threatens collaborations between data scientists and subject matter experts. Accuracy and error metrics alone fail to tell the whole story of a model – its risks, strengths, and limitations – making it difficult for subject matter experts to feel confident in their decision to use a model. As a result, models may fail in unexpected ways or go entirely unused, as subject matter experts disregard poorly presented models in favor of familiar, yet arguably substandard methods. In this paper, we describe an iterative study conducted with both subject matter experts and data scientists to understand the gaps in communication between these two groups. We find that, while the two groups share common goals of understanding the data and predictions of the model, friction can stem from unfamiliar terms, metrics, and visualizations – limiting the transfer of knowledge to SMEs and discouraging clarifying questions being asked during presentations. Based on our findings, we derive a set of communication guidelines that use visualization as a common medium for communicating the strengths and weaknesses of a model. We provide a demonstration of our guidelines in a regression modeling scenario and elicit feedback on their use from subject matter experts. From our demonstration, subject matter experts were more comfortable discussing a model's performance, more aware of the trade-offs for the presented model, and better equipped to assess the model's risks – ultimately informing and contextualizing the model's use beyond text and numbers. 
    more » « less
  3. null (Ed.)
    Spatial interpolation is a class of estimation problems where locations with known values are used to estimate values at other locations, with an emphasis on harnessing spatial locality and trends. Traditional kriging methods have strong Gaussian assumptions, and as a result, often fail to capture complexities within the data. Inspired by the recent progress of graph neural networks, we introduce Kriging Convolutional Networks (KCN), a method of combining advantages of Graph Neural Networks (GNN) and kriging. Compared to standard GNNs, KCNs make direct use of neighboring observations when generating predictions. KCNs also contain the kriging method as a specific configuration. Empirically, we show that this model outperforms GNNs and kriging in several applications. 
    more » « less